记者19日从中国科学技术大学获悉,该校郭光灿院士团队在光量子行走领域取得重大突破。他们利用人工神经网络作为开放系统中混合量子态的有效拟设,并通过提高神经网络的训练效率,在具有内禀高维结构的开放光量子行走系统中,首次实现了高保真度混合量子态重构。相关成果日前发表在国际学术期刊《科学・进展》上。
量子行走在量子模拟和量子计算中具有重要研究价值。最近,基于人工神经网络学习开放量子系统的方法在理论上被提出。但随着系统规模不断增加,神经网络要保持对其混合量子态的高表达能力,就需要更为复杂的网络结构。因此,直接应用该方法重构大规模开放量子行走中的演化状态,将面临复杂的网络训练问题。
研究团队构建新型干涉测量装置以显著增加测量基数目,并通过建立开放量子行走系统与受限玻尔兹曼机网络模型之间的映射,以及开发新的梯度优化算法高效训练神经网络,最终完成对具有一定规模的开放量子行走系统中混合量子态的有效表征。
研究显示,仅利用相对于传统态层析方法50%的测量基数目,即可实现平均保真度高达97.5%的开放光量子行走的完整混合量子态表征。同时,采用新算法的神经网络训练迭代次数可以减少一个数量级,并且可以高效规避局域极小值的影响,使损失函数到达更低取值,从而极大提高重构保真度。
研究人员表示,这种高效的神经网络混合量子态层析方法为开放量子行走的广泛应用提供了新的可能性,并为进一步研究噪声辅助的量子计算和量子模拟奠定了基础。
( 记者吴长锋)
大视野融媒网(原大视野新闻网)是最富价值的互联网推广平台,致力于打造国内最有影响力的融媒体发布平台。
大视野融媒网版权与免责声明:
一、凡本站中注明“来源:大视野融媒网”的所有文字、图片和音视频,版权均属大视野融媒网所有,转载时必须注明“来源:大视野融媒网”,并附上原文链接。
二、凡来源非大视野融媒网的新闻(作品)只代表本网传播该消息,并不代表赞同其观点。
如因作品内容、版权和其它问题需要同本网联系的,请在见网后30日内进行,联系邮箱:dsynews@126.com。
版权声明:大视野新闻网版权所有,未经书面授权,不得转载或建立镜像,违者依法必究。 本站违法和不良信息举报电话:010-67332088晋ICP备20007253号
Copyright © 2016- 大视野新闻网 All Rights Reserved互联网新闻信息服务许可证:ISSN 2224-3933 京公网安备:15010502001245